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Introduction

The purpose of this research was to study the propagation of glactic ions through

various materials. Galactic light ions result from the break up of heavy ion particles

and their propagation through materials is modeled using the one-dimensional Boltzmann

equation. When ions enter materials there can occur (i) the interaction of ions with orbital

electrons which causes ionization within the material and (ii) ions collide with atoms

causing production of secondary particles which penetrate deeper within the material.

These processes are modeled by a continuum model. The basic idea is to place a control

volume within the material and examine the change in ion flux across this control volume.

In this way on can derive the basic equations for the transport of light and heavy ions in

matter. Green's function perturbation methods can then be employed to solve the resulting

equations using energy dependent nuclear cross sections.



Throughout this report wewill use the following symbols and notation:

Cj (_, _, E) is the flux of ions of type j moving in direction

having units (#particles/cm 2 - sec - sr - Mev/amu)

E

Aj

 j(E)
Sj(E)

Rs(E)
J

_jk

7%

i

P

zj

is the ion energy. (Mev/amu)

is the atomic mass of the jth type ion (amu)

is the macroscopic cross section. (cm-1) t

is the average energy loss per unit length or stopping power

or linear energy transfer dE (Mev/cm).-_-.

is the slowing down range for type j ions. (cm) R s (E) = foe A_ dE'S_ (E')

is the ion type.

is a unit vector in the direction of propagation.

is production cross section of type j ions with energy E and direction

by collision with type k ions of energy E' and direction _'

having units of (cm - sr - Mev/amu)

is the outward directed unit normal to boundary.

is vector to boundary point. (cm)

is the position vector to arbitrary point in region (cm) _ = p_ + in

is the projection of _ on t_ (cm)

is the component of _ perpendicular to _ direction.

charge of jth type ion.

a parameter defined as us = Aj "

The basic Boltzmann equation results from examination of a control volume placed

within the material. We find that

/Change in ion flux h /Gains within theh /Losses due to anyh

= - _nuclear collisions )_within a volume elementJ _volume element J

This gives the Boltzmann equation

..4

1 0 Sj(E)+_rj(E) Cs(x, fl, E)=Z dE' d_'aSkCk(i,_',E') (1)
V A s OE k>j

The equation (1) is to be associated with the geometry of figure 1.
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Figure 1. General Geometry for Boltzmann's equation

Multiply the equation (1) by Sj(E) and define the quantities

5/a--j(e,_,E)= Sj(E)Z dE' _6'
k>j

ajkCk(x, f_, E )

(2)

(3)

to obtain

[_.V Ss(E) 0 +_j(E)] --a s OE ¢_(e' _' _) = aS (e' _' E)"

Note that _. UCj = _ is the directional derivative in the direction _ and that

(4)

OE ORj OE ORs St(E)

so that the equation (4) can be written as

Io 0 ]ORs + o'j(E) _j(:g, _, E) = -Gj(_, _, E). (5)

Introduce the characteristic variables (Vj, _j) given by the transformation equations

vs = 0- R_(E) _ = p + nj(E) (6)



where p = _. Y. Also introduce the variables

Xj(,j, %) = %(P_ + _, _, E)

g_(_j,%)=gj(p_ + 2_,_, E)

-_j(,l_,%) =_( E)

(7)

-_ f

E

a

x_O __

c E=O

(a)

b X

gj= -nj .-,

- _j

_j gj = "rlj

c I nj
(b) _J

Figure 2. Geometry for characteristic variables

By the chain rule we have

-- o% o% o%0% 0¢ + and w = (-1) +
0-7= o,Tj o_ onj _ a_

so that the equation (5) simplifies to

in terms of the new variables. This equation can be integrated using the integrating factor

exp [_ _n_ _j(_',_j) d_ '] (9)

to obtain

XjOTj,%) = exp[-_ Sj(_7',%)drl']xj(a,_j)

1 j_an'_ 1 in'" I'r/',+_ exp[-_ , _ %)dC]a(_',%)d,/
(lo)



where a is any real number. Consequently, the solution to the equation (4) can be written

as

(11)

where

1 fp-njI(a, p- Rj(E)) - exp -2_a '- ]2 fl')) dr/' (12)

From equations (6) we find that

2p=r/j +_j and 2Rj(E) =_j-r/j (13)

1
so that when r/r = a we will have p = _(a + _j). Observe from figure 2 that along the line

of integration we will have _j = constant. The value of a is selected such that p_ + _n =

is a point on the boundary. Thus, the vector (_) fl + _n = F dotted with _ gives the

value

a -" 2ft. F - _j -- 2d - p- Rj(E) (14)

where d = _. F. Note that when E = E' and r/j = r/r we have from equation (13) that

2Rj(E') = (j - rl' (15)

or

Ez--:---[:_;1 ( _j-r/r)2 =R-1 j ( p-{-_j(E)2 _r/r)

and similarly by changing symbols when

E"= R-;1 (P+ nJ(E)-r/'r2

-Sj (E')

with dE r- 2Aj dr�' (16)

have dE"- -Sj(E") drlrr. (17)
we

2Aj

We examine the limits of integration in equation (11)

have

2Rj(E') = p + Rj(E) - a

2d = p + Rj (E) + a.

and from equation (14) we have

and observe that when r/l = a we

(18)

(19)



Adding the equations (18)

or

and (19) we find

nj(E') + d = p + nj(E) (20)

E t -= R;I([ -- d 2t- Rj(E)). (21)

Next we examine the lower limit of integration and find that wl_en r� = p - Rj (E), then

2Rj(E') = p + Rj(E) - p + Rj(E) implies that E' = E. In the second term of equation

(11) when r/' = a we again find that E"= R-fl(p+ Rj(E)-d) and when r/' = p- Rj(E)

then E _/= E. Also,

,/') =
1

+ [([j + _j - 2Rj (El')) = [j - Rj(E") = p + Rj(E) - Rj(E").

Consequently, the equation (11) can be written in the form

Cj (_, _, E) = Fj (E, R_ -1 (Rj (E) - d + p))¢j (F, Q, R_- 1 (Rj (E) + p - d))

f R;_(R_(_+.__ (22)+ Fj(E,E")-Gj((p+Rj(E)-Rj(E"))_+_n,_,E") Aj dE"
JE

where

Fj(E1, E2) = exp - dE'1 Sj(E')

Define the nuclear survival probability (reference Wilson 1977) as

Pj(E) = exp - Sj(E') dE'

then the equation (23) can be written as

Fj (El, E2) =

Then from equation (22) we can write the solution to equation (3) in the form

¢_(_, fi, E) = s_) ¢_(f, fi, E5)
Sj(E)Pj( )

AjPj(E') dE" d_' ajk(E',E")¢k(e + (Rj(E) - Rj(E'))fi, fi',E")
+ Z dE' Sj (E) Pj (E) ,

k>j

where Ej = R-_l(p+ Rj(E)-d), _= _r_ + P_ and E' and E" have been interchanged.
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In the one-dimensionalstraight aheadapproximation f7is a unit vector in the direction

of _ with p -- x, :7.,_ = 6, rlj - x - Rj (E), _j = x + Rj (E) and F = 0. (i.e. the origin 0

moves to the boundary x = 0). The equation (25) then reduces to

Cj(x,E) = S_(Ej)P_(E_)
Sj(E)Pj(E) Cj (0, E/)

z/? /?AjPj(E') dE" ' " -
+ dE'sj(E)Py(E ) , ajk(E ,E )¢k(x + Rj(E)- Rj(E'),E")

k>j

where Ej is determined from x and E such that

E_= n;l(x + nj(E)).

(26)

The solution given by equation (26) can be expressed in terms of Green's function as

jr0 °°Cj(x,E) = _ Gjk(x,E, Eo)¢k(O, Eo)dEo

k>j

(28)

where Ck(0, E0) = fk(Eo) are boundary conditions. Substituting the assumed solution

given by equation (28) into equation (26) we obtain

_ io °° _'_ io_ Sj(EJ)Pj(EJ) Gjt(O, Ej,Eo)¢t(O, Eo)dEoGj_(x, E, Eo)_be (0, Eo)dEo = Sj( E)Pj( E)
-

zl zf+ dE _ 3 o t s I dEU¢r rE1 EU_
----_ jkk , )

Sj ( E)Pj (E) JE, ak, (x-t- Rj ( E) - Rj (E'), E", Eo)be(0, Eo) dEo.
k E _. JO

Note that when g = K we can equate like coefficients and find that Gjm(X, E, E0) must

satisfy the integral equation

Gjm(x, E, Eo) = Sj(Ej)Pj(E_) G_m(O,E_, Eo)
Sj(E)Pj(E)

/;aE, Sj(_,)pj(E)a_Pj(E'), dE" _k(E', E")ak_(x + R_(E) - n_(E'), E", Eo)

subject to the boundary condition Gjm(O, E, Eo) = 5jmS(E - Eo), where the value for Ey

is determined from the inverse relation Ej -- R-_l(x + Rj(E)). The Gjm terms are written

using the Neumann expansion as a perturbation series

oo

cjm(_, E, Eo) _(')" (3o)= u3m tz, E, E0)
i=0

7
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with leading term

Sj(Ej)Pj(Ej)
G (.°) (x,E, Eo) = 5jm6(Ej - Eo). (31)
--3m Sj(E)Pi(E)

withEj = R_l(x + Rj(E)). Note that when x =O we have Ej = E so that _(°) (O,E, Eo)--3m

satisfies the above boundary condition. The higher order terms are determined from the

recursive definition - t

g(_+l) (x, E, E0) =
jrn

rE, A, Pj(E') f'_c_"a 'E' " (n) _ E", (32)
E ]E dE' ]E ur__ jk_. ,E )Gkm(x + Rj(E)- Rj(E'), Eo).

k Sj(E)Pj(E) ,

and must satisfy the boundary conditions G(n+l)(x, E, E0) = 0 for n = 0, 1, 2, .... In the
--3m

special case n = 0 the equation (32) reduces to

G(1), E, E0)jm[X_

Ej AjPj(E') /_ dE"ajk(E',E") Sk(E'k)Pk(E'k) 6km6(E'k -- Eo) (33)E
dE'Sj(E)Pj(E) , Sk(E")Pk(E")

k

where Rk(E'k) = z + Rj(E) - Rj(E') + Rk(E"). (i.e. treat x + Rj(E) - Rj(E") as an

x* value. See for example equation (27) .) Again we observe that when x = 0 we have

Ej = E and so the boundary condition at x = 0 is satisfied.

Cross Section assumption 1

For interactions dominated by peripheral processes we use

ajm(E',E")= " ' E") (34)

so that the equation (33) becomes

G(1),
jm_z, E, E0) =

_/Ej AjPj(E') /_ Sk(E'k)Pk(E'k); _'_' Eo)dE'sj(E)Pj(E) , dE" ajk(E")f(E'-E") S-kk_okmu_'k-

(35)

where

E'k = Rkl(x + Rj(E)- Rj(E') + Rk(E")). (36)

We integrate with respect to E" and observe that the only nonzero term occurs when

E" = E'. This gives

/% AjPj(E') ajk(E ) Sk(E'k)Pk(E_)xt_' Eo)6k,n (37)

._(I) , ' __

_,j,_(x,E, Eo) : dE' Sj(E)Pj(E) Sk(E')Pk(-_ _'_k
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where

E lnk( _)=x + Rj(E) - n_(z') + nk(E')

Ry(E') - nk(E') =x + Rj(E)- nk(Erk).

(38)

We know that ujRj(E') = ukRk(E') so that the above can be written as

Thus, we can write

or

b,k

n_(E') =l_,k_ ,,jl
= vj

Rk(E') [_'k- _'j[

(39)

Differentiate the equation (39) with respect to E_ to obtain

_ l,j (-R_(E_k))dE_ or dE'= vj Sk(ED dE' k (40)
R_(E')dE' Irk - vii luk _ vj I A_

Sk(E')

The equation (35) can then be written as

(1) Eo) = dE_ _o.j_(E') _'J Pk(E_) 5(E_ - Eo)6km
Gjm(X'E' k JE'_I _j(r_.;)l-'j( ) lvk Z_'jl Pk(E')

(41)

The only nonzero contribution comes when k = m and E_k = Eo and so equation (41)

reduces to

G(1)/ f hjm(x,E, Eo, E') if _.j (R,-,(Eo)-x) < Rj(E) < _-_R,_(Eo)-x
jm(.X, E, Eo) : I. o otherwise

(42)

where

and

AjPj(E') ,. vj Pm(Eo)

hj,_(x, E, Eo, E') = Sj--_)P_) ajm( E )lu m _ u./l Pm(E')

(urn [x + R,(E)- Rm(Eo)]) .E' = __-2_ t_'m- _'jl

(43)

(44)



That is, when E L = Eo and k = m we have from the equation (38) that

R.,(Eo) =x + R_(E)- Rj(E') + m_(m')

Rj(E')- Rm(E') =x + Rj(E)- Rm(Eo)

(l - _ii_) n_(E') :x + n_(E)- nm(Eo)

_ Ilm (x +nj(E)- n.,(Eo)).
R_(E') Ill.,- _I

Also from the transformation equations (13) the 77k, _k. r/j, _j variables are related through

the range scale factors Ilj and Ilk, where IljRj = IlkRk. This produces the relations

_k - _k : -2Rk : -2ilJ Rj = _J (_Tj - (j).
llk Ilk

Then from the equations

_j + _j =(k + 77k= 2p

we find that by adding the equations (45) and (46) that

2_7j = 1+ _k+ 1-- _k

and subtracting (46) fl'om (45) we obtain

(= - r/k + 1 + _k.

Interchanging j and k in the equations (47) and (48) we find that

_j + Ilk" /

{.k - vj

+ 2ilk

+k T;k ) _j"

(45)

(46)

(47)

(4s)

Then when r]j is a value U' lying between the constants -_j and +_j, (See Figure 2(b)),

we will have

10



Changing k to m we find

Gym(O, E, Eo) = 6jm6(E - Eo) can be written in theNote that the boundary condition

form

Gjm(O, E, Eo) = 5jmS(R-f l(_j) - Eo) = 5jm6(_j - Rj(Eo) ) = 8(_m - Rm(Eo) )

so that when _m = Rm(Eo) we have

r/ = 2v_ R,_(Eo) _ (v______+ _ ) _j.
v_ - vj v_ v3

(49)

Using the equations (6) and (49) we now calculate the inequality which occurs in the

equation (42). From the equation (10), with a = -_, we have the inequality -_j < 77' < r]j

which implies

-_j <rf < Vj

2Vm (um+vj)-z- nj(E) < nm(Eo)- (z + n_(E)) < x- Rj(E)
v,_ - vj vm - vj

-x < Rm(Eo) + Rj(E)- Um + Vj (z + Rj(E)) < x
l] m -- btj 12m --

Um + Uj x-x< + 1 Rj(E) < x + -
- vj v_ - vj v_ - vj vj

_:_ < _,_n,_(Eo)-_,jn_(E)< _,_

-vjx > ujRj(E)-u,nRm(Eo) > -VmX

.mn_(Eo) - _'7 > _,jn_(E)> _,,_Rm(Eo)- _'_z

_mR._(Eo)- z >nj(E) > " (R_(E0)- x)
vj vj

_m(rim(E0)- x) <nj(E) < _'mn_(Eo)-
vj v3

X

Cross Section assumption 2

We start with equation (33) and assume crjm(E', E") has a Gaussian distribution of

the form

1 (E' - E" - ejm)2

Crjm(E',E") = 6"jm(E") AjmV/_ exp 2A_m
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wecan then write the equation (33) in the form

G (1) (x, E, Eo) - dE' dZ"FjkSkm (50)
jrn

where

with

AjPj(E') E") Sk(E_)Pk(E_) 5(E_- Eo) (51)
Fjk = Sj(E)Pj(E) °'Jk(E" _Pk(E") I

E_ = _kl(X -_- .Rj(E)- Rj(E') "F .Rk(E/t)) (52)

The integration of (50) is over the region illustrated in the figure 3 in the limit as T ---* oc.

In expanded form the equation (50) has the form

(1) Eo)C,jm(X, E, =

/?/?dE' dE" AjPj(E') Sk(E_)Pk(E_) 5kmS(E_ -- Eo).

, Sj(E)Pj(E) v'jk Sk(E,,)pk(E,,)

(53)

where

1 [ (E'-E"-cjk) 2]¢'jk = _jk(E") Ajk V/_ exp - 22Ajk

ntt_T

E _

Y
E'=E E'=EJ

E •

Figure 3. Limits of integration for Green's function term.
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Note that for the first integration in the E" direction we have E' is a constant.

Consequently, we let

E" + ejk - E' dE"
r= with dr = _-- (54)

v_A_k V_Ajk

The equation (53) can then be written in the form

AjPj(E') = "-" -r2 Sk(E_)Pk(E_) skmS(E_ - EO).
dr v/__Sj(E)Pj(E ) ajk_r)e __

(55)

where f = vf2Ajkr -- ejk + E' and

E' k = R'_l(x + Rj(E)- Rj(E')- Rk(f)). (56)

This integral can be simplified by using one of the mean value theorems for integrals and

written as

G(')' E, Eo)
jm I.T, =

[E_ AjPj(E') ,- Sk(E_.)Pk(E_.) _ .r_, (57)dE' 2Sj (E) Pj (E) ajk _r.) Sk (_------.)Pk(r.---_ °kmo(r_k* - Eo)--_ e -_ dr.

with f. = V/2Ajkr * -- ejk + E' and

E'k.: n;l(x + n_(E)- Rj(E')- n_(_.)) (58)

where r* is some mean value in the interval (_ ¢c) and when E' = E0, then E' is a

solution of the nonlinear equation

nk(E0) = _ + R_(E)- Rs(E')- R_(v_s* -_k + E') (59)

provided E < E' < Ej. Consequently, we can write

G(1). E, Eo)jra l,X, =

½ Sj(E)Pj(E) grn< ] Sm(f'.)Pm(_*)

0

ire < E' < Ej

otherwise

(60)

where E' is a solution of the nonlinear equation (59) , r* is some mean value and erfc is

the complimentary error function.
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Figure 4. New limits of integration for Green's function term.

Another viewpoint

By interchanging the order of integration in equation (33) we obtain the limits of

integration illustrated in the figure 4 and the equation (33) can be written as

U' U r i/_(t) (x E, Eo) = dE" dE'Fjk_km + lira T dE" dE'Fjk_krn. (61)
_3m t _ T---,_ JEj

Observe that along the line E"=constant, we have from equation (52) that

dRk(E'k) dE' k _ dRj(E')

dE' k dE' dE'

Ak dE'k Aj

Sk(E'k) dE' Sj(E')

A._Sj(E') dE_.
or dE' - Aj Sk (E_)

Hence, when k = m and 5km = 1, the equation (61) reduces to

(t) E0)Gjm (x, E, =

/E m /E,_l AmSj(E') _TdE,,/E'nl
dE" Fjm dE_ + lim

j JEm3 AjSm(E_) T--°°JE_ JE"

AmSj(E') dE"
Fjm AjSm(E" )

(62)
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The limits in the above equation are determined a:s follows.

and k = m the equation (52) gives

Rm(E'_)=x + n_(E)- Rj(E) + nm(E")

or E" =R_l(x + Rm(E"))= Era1

and when E I = Ej and k = m the equation (52) gives

Rm(E_) -- x + Rj(E) - Rj(E-j) + Rm(E _')

Observe that when E I -- E

(63)

But Rj(Ej) = x + Rj(E) so that E_ = E'. Also when E' = E" and k = m we obtain

from the equation (52) that

Rm(E') =z + R_(E)- R_(E")+ Rm(E")
vjRj(E")

Rm(E_) -x + Rj(E)- Rj(E") +
I) m

with

E' = R-_l(x + Rj(E)- Rm(E_) + Rm(E")).

Using the properties of the Dirac delta function we find that the only nonzero contribution

to the integral dEem occurs when E_ = E0. In this case the integral given by equation

(62) simplifies to

G(1),
jm_X, E, Eo)

/_ (E')Pj(E') ajm(E',E') Pm(Eo)dE"AmajtE)Pj(E ) Sm(E")Pm(E") fl (64)

+ lim f T'_-_'A_Sj(E')Pj(E')_ (E' E") Pm(Eo)
T--,_ .]E_ Sj(E)Pj(E) Sm(E")Pm(E") f2

where

E' = R-fl(x + Rj(E)- R,_(Eo) + nm(E")) (65)

and

1 if Era3 < Eo < Eml (66)fl = 0 otherwise

1 if E" < Eo < E._ (67)f2 = 0 otherwise
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In the solution

G(t),
jm_x, E, Eo) =

E3EdE 'AmSj(E')Pj(E') ''_' E") P._(Eo)
Sj'(E)Pj(E) _rJml_ ' Sm(E")Pm(E") fl (68)

/_ dE ''AmS_(E')Pj(E') " E' E") P_(Eo) f2+ Sj(E)Pj(E) crj,_( , Sm(_(E")
J

-_ [

we make the approximation that E' remains almost constant over the above intervals of

integration. We define the quantity

E+EoE[ = Rfl(x + _j(E) - Rm(E0)+ Rm( (Es + 2 )))

and use a mean value theorem for integrals to write the solution of equation (68) in the

form

where

Using the error function

(1) xG_._( ,E, E0) =

I AmS,(E'I)Pj(E'I)Pm(Eo) fl__/_2
5 Sj(E)Pj(E)Sm(E_)Pm(E[)

1 ArnSj(E_I)Pj(E[)Pm(Eo) f2222__ e -_2 dr

-t 2 Sj(E)Pj(E)Sm(E_)Pm(E_) x/rr

Ej <E_ < E

" Ej<E; <c_

Ej+ ejk- El
rl= V_Ajk

E + c3k- E_

r2=_ V_ZXjk

erf(x)- _ e -r2 dr

and complimentary error function

erfc(x) = e -r_ dr

the above solution can be written in the form

._j,_, E, E0) =

+

e -r2 dr

1 AmSj(E()Pj(E[)Pm(Eo)

2 Sj(E)Pj(E)Sm(E{)Prn(E;)

1 AmSj(E[)Pi(E[)Pm(Eo)

" P E*2 Sj(E)P_(E)Sm(E_) _(_.)

fl (erf(r2) - erf(rl))

f2 erfc(rl)
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